首页> 外文OA文献 >Synthetic Aperture Radar Processing By a Multiple Scale Neural System for Boundary and Surface Representation
【2h】

Synthetic Aperture Radar Processing By a Multiple Scale Neural System for Boundary and Surface Representation

机译:多尺度神经系统合成孔径雷达的边界和表面表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A neural network model of boundary segmentation and surface representation is devdoped to process images containing range data gathered by a synthetic aperture radar (SAR) sensor. The boundary and surface processing are accomplished by an improved Boundary Contom System (BCS) and Feature Contour Systmn (FCS), respecitively, that have been derived from analyses of perceptual and nenrobiological data. BCS/FCS processing make's structures such as motor vehicles, roads, and buildings more salient and interpretable to hnman observers than they are in the original imagery. Early processing by ON cells and OFF cells embedded in shunting center surround network models preprocessing by lateral geniculate nucleus (LGN). Such preprocessing compensates for illumination gradients, normalizes input dynamic range, and extracts local ratio contrasts. ON and and OFF cell outputs are combined in the BCS to defim; oriented filters that model cortical simple cells. Pooling ON and OFF outputs at simple cells overcomes complementary processing deficiencies of each cell type along concave and convex contours, and enhances simple cell sensitivity to image edges. Oriented filter outputs are rectified and outputs sensitive to opposite contrast polarities are pooled to define complex cells. The complex cells output to stages of short range spatial competition (or endstopping) and orienta.tiona.l competition arnong hypercomplex cells. Hypercomplex cells activate long range cooperative bipole cells that begin to group image boundaries. Nonlinear feedback between bipole cells and hypercomplex cells segments image regions by cooperatively completing and regularizing the most favored boundaries while suppressing image noise and weaker boundary groupings. Boundary segnmentation is perfornwcl by three copies of the BCS at smalL medium, and large filter scales. whose subsequent interaction distances covary with the size of the filter. Filling-in of multiple surface: representations occurs within the FCS at each scale via a boundary-gated diffusion process. Diffusion is activated by the normalized LGN ON and OFF outputs within ON and OFF filling-in domains. Diffusion is restricted to the regions defined by getting signals from the corresponding BCS boundary segmentation. The filled-in opponent ON and OFF signals are subtracted to form double opponent surface representations. These surface representations are shown by any of three methods to be sensitive to both image ratio contrasts and background luminance. The three scales of surface representation are then added to yield a final multiple-scale output. The BCS and FCS are shown to perform favorably in comparison to several other techniques for speckle removal.
机译:设计了边界分割和表面表示的神经网络模型来处理包含合成孔径雷达(SAR)传感器收集的距离数据的图像。边界和表面处理分别通过改进的边界锥系统(BCS)和特征轮廓系统(FCS)完成,这些方法是从感知和神经病学数据的分析中得出的。与原始图像相比,BCS / FCS处理使诸如汽车,道路和建筑物之类的结构对hnman观察者而言更加突出和易于理解。嵌入在分流中心环绕网络中的ON单元和OFF单元的早期处理通过侧向膝状核(LGN)进行预处理。这种预处理可以补偿照明梯度,对输入动态范围进行归一化,并提取局部比率对比度。开和关单元输出在BCS中合并以进行定义;面向皮质简单细胞模型的定向过滤器。在简单单元处合并ON和OFF输出可克服沿凹和凸轮廓线每种单元类型的互补处理缺陷,并增强简单单元对图像边缘的敏感性。定向的滤波器输出经过整流,对相反极性的极性敏感的输出被合并以定义复杂单元。复杂的细胞输出到短距离空间竞争(或终止)和定向竞争的阶段。超复杂细胞激活远距离协作双极细胞,开始对图像边界进行分组。双极子细胞与超复杂细胞之间的非线性反馈通过协同完成并规范化最受好评的边界,同时抑制图像噪声和较弱的边界分组来分割图像区域。在中等大小和较大的过滤器规模下,三份BCS会造成边界覆盖。其后续互动距离随过滤器的大小变化。多个表面的填充:通过边界门控扩散过程,在每个尺度的FCS内进行表示。扩散由ON和OFF填充域内的标准化LGN ON和OFF输出激活。扩散仅限于通过从相应的BCS边界分段获取信号而定义的区域。减去已填充的对手ON和OFF信号以形成双对手表面表示。这些表面表示通过三种方法中的任何一种对图像比率对比度和背景亮度均敏感。然后将三个比例的表面表示相加,以产生最终的多比例输出。与其他几种去除斑点的技术相比,BCS和FCS表现出了良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号